The nuclear-cytoplasmic distribution of the Xenopus nuclear factor, xnf7, coincides with its state of phosphorylation during early development.

نویسندگان

  • M Miller
  • B A Reddy
  • M Kloc
  • X X Li
  • C Dreyer
  • L D Etkin
چکیده

We describe the characterization in Xenopus laevis of a nuclear protein, xnf7, which is first detected in the oocyte GV and is eventually enriched in nuclei of cells of the adult brain. Previous studies have shown that this protein contains zinc-finger-like structures and acidic domains typical of transcriptional activators, and is phosphorylated in vitro by p34cdc2 protein kinase. The protein also binds to double-stranded DNA. These data suggest that xnf7 may function as a transcription factor. During oocyte maturation, xnf7 is released into the cytoplasm and is not detectable in nuclei until the mid-blastula-gastrula stage of development. Western blot analysis of xnf7 isolated from oocytes and eggs showed the existence of multiple bands or isoforms of the protein. Unique isoforms that are generated during oocyte maturation are the result of phosphorylation. The phosphorylated isoforms remain in the cytoplasm until the mid-blastula stage. The re-accumulation of protein in the embryonic nuclei at this time correlates with the increase in abundance of the less phosphorylated isoforms. The xnf7 protein possesses a nuclear localization signal (NLS) similar to the bipartite signal found in nucleoplasmin. Newly synthesized xnf7 accumulated in the oocyte GV to detectable levels within a few hours following synthesis suggesting that retention of the protein in the cytoplasm during early cleavage may be due to a process that interferes with the function of the NLS. These data suggest that compartmentalization and/or post-translational modification of the nuclear protein xnf7 may be involved in regulating its function during early development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytoplasmic retention of Xenopus nuclear factor 7 before the mid blastula transition uses a unique anchoring mechanism involving a retention domain and several phosphorylation sites

Xenopus nuclear factor 7 (xnf7) is a maternally expressed protein that belongs to the B-box zinc finger gene family consisting of transcription factors, protooncogenes, and ribonucleoproteins. Its function is regulated by retention in the cytoplasm from oocyte maturation until the mid blastula transition (MBT) when it reenters the nucleus. We defined a 22-amino acid cytoplasmic retention domain...

متن کامل

Xenopus nuclear factor 7 (xnf7) possesses an NLS that functions efficiently in both oocytes and embryos.

Xenopus nuclear factor 7 (xnf7) is a nuclear phosphoprotein that is encoded by a member of a novel zinc finger gene family and likely functions as a transcription factor. It possesses a nuclear localization signal (NLS) similar to the bipartite basic NLS of nucleoplasmin, but unlike nucleoplasmin, which re-enters nuclei immediately after fertilization, xnf7 remains cytoplasmic until the mid-bla...

متن کامل

Xnf7 Contributes to Spindle Integrity through Its Microtubule-Bundling Activity

Regulation of microtubule dynamics and organization in mitosis by a number of microtubule-associated proteins (MAPs) is required for proper bipolar spindle assembly, yet the precise mechanisms by which many MAPs function are poorly understood. One interesting class of MAPs is known to localize to the nucleus during interphase yet fulfill important spindle functions during mitosis. We have ident...

متن کامل

Two forms of Xenopus nuclear factor 7 have overlapping spatial but different temporal patterns of expression during development

Xenopus nuclear factor 7 (xnf7) is a maternal gene product that functions in the determination of the dorsal-ventral body axis. We have cloned two xnf7 cDNAs, xnf7-O and xnf7-B, that have a different temporal pattern of expression. The cDNAs differ by 39 amino acid residues scattered throughout the molecule. Most of the changes were conservative in nature. Using gene specific probes we found th...

متن کامل

O-11: Diverse Effects of Polyunsaturated Fatty Acids on Oocyte Maturation and Development In vitro

Background: Polyunsaturated fatty acids (PUFAs) have been shown to influence fertility and endocrinology of reproduction and metabolic activity in many species. In dairy cows, we and others have shown changes in steroid and metabolic hormones and prostaglandins leading to alteration of ovarian activity and uterine function. These can influence fertility by changes in folliculogenesis cyclicity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 113 2  شماره 

صفحات  -

تاریخ انتشار 1991